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Abstract—We design an explicit low-complexity coding
scheme that achieves the multiple access channel resolvability
region for an arbitrary discrete memoryless multiple access
channel whose input alphabets have prime cardinalities. Unlike
previous works, we do not assume channel symmetry and rely
on rate-splitting to avoid time sharing when it is known to be
unnecessary. The idea of our construction is to reduce the prob-
lem of multiple access channel resolvability to a combination
of several source resolvability problems. Our coding scheme
relies on polar codes for source coding to implement source
resolvability, and a block Markov coding scheme that performs
randomness recycling in the different encoding blocks.

I. INTRODUCTION

Channel resolvability has been introduced for point-to-
point channels and multiple access channels in [1] and [2],
respectively. Applications of these notions include strong
secrecy for the point-to-point [3], [4] and multiple access [5],
[6] wiretap channels, cooperative jamming [5], semantic
security for the point-to-point [7] and the multiple access
wiretap channel [8], and strong coordination in networks [9].

Beyond existence results of channel resolvability codes
provided in the above references, several works have inves-
tigated the constructions of such codes. Explicit and low-
complexity constructions based on polar codes for channel
resolvability have been proposed for binary symmetric chan-
nels [10] and discrete memoryless channels whose input
alphabets have prime cardinalities [11]. Another explicit
construction based on injective group homomorphisms has
been proposed in [12] for channel resolvability over binary
symmetric channels. Low-complexity, but non-explicit, linear
coding schemes for channel resolvability over arbitrary mem-
oryless channels have also been proposed in [13]. As for mul-
tiple access channel resolvability, two explicit constructions
have been proposed in [14] for symmetric multiple access
channels, one based on invertible extractors and a second
one based on injective group homomorphisms.

In this paper, we focus on code constructions for multiple
access channel resolvability. Our contribution is to provide
an explicit and low-complexity coding scheme that achieves
the multiple access channel resolvability region [8] of an
abritrary discrete memoryless multiple access channel whose
input alphabets have prime cardinalities. We also highlight
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that our proposed coding scheme does not require time-
sharing when it is known to be unnecessary. The main idea
of our coding scheme is to reduce the problem of multiple
access channel resolvability to a combination of several
source resolvability problems. Our coding scheme involves
block-Markov encoding that takes advantage of randomness
recycling in consecutive encoding blocks, and polar codes
for source coding [15] to implement source resolvability. To
avoid, as much as possible, time-sharing, we also implement
the idea of rate splitting developed in [16] for multiple access
channels. The idea of Block-Markov encoding to recycle
randomness is closely related to recursive constructions of
seeded extractors in the computer science literature, e.g., [17].
Finally, note that our proposed construction does not use the
same tools as the one used in [14] for multiple access channel
resolvability over symmetric multiple access channels, and
that it remains unclear whether the coding schemes in [14]
could be extended to achieve the multiple access channel
resolvability region of an arbitrary multiple access channel.

The remainder of the paper is organized as follows. The
problem statement is provided in Section III. Our proposed
coding scheme and its analysis are provided in Section IV
and Section V, respectively. Finally, Section VI provides
concluding remarks.

II. NOTATION
Let [a,b] be the set of integers between |a| and [b].

®
Forn € N, let G,, £ “ﬂ

matrix defined in [15]. The components of a vector X LN
of size N are denoted with superscripts, ie., X'V £
(X1, X2 ..., X"). For any set A C [1,N], let XN [A]
be the components of X'V whose indices are in .A. For two
probability distributions px and gx defined over the same
alphabet X, define the Kullback-Leibler divergence between

px and gx as

n
be the source polarization

D(px|lax) £ Y px(z)log Zﬁg; :

xEX
For joint probability distributions pxy and gxy defined
over X x ), the conditional Kullback-Leibler divergence is
written as

Epy [D(py|xlav)x)] £ Z px (2)D(py|x =2 |9y | x=2)-
reX




III. PROBLEM STATEMENT

Consider a discrete memoryless multiple access channel
(X xV,qzxv,2), where X, Y and Z are finite alphabets.
A target distribution gz is defined as the channel output
distribution when the input distributions are ¢x and gy, i.e.,

V2 e Z,q2(2) 2 ) azixy (Rl y)ax ()gy (y). (1)
TEX yeY
Definition 1. A (2NF1 2NB2 N) code for the memoryless
multiple access channel (X x ), qzxy, Z) consists of
e two randomization sequences S1 and So independent
and uniformly distributed over S; = [1,2N] and
Sy £ [1,2NVE2], respectively;
o two encoding functions fi n : S — XN and fon ¢
Sg _>yN’.
and operates as follows: the transmitters form fi n(S1
and fo n(S2), which are sent over the channel (X X

Y, az1xv, 2).

Definition 2. (Ri, Rs) is an achievable resolvability rate
pair for the memoryless multiple access channel (X X
Y, qzxy, 2) if there exists a sequence of (2NFa oNER2 )
codes such that imy_, 0o D(pz1n]||gzin) = 0, where
grun = Hf\il qz with qz defined in (1) and Vz''N € ZN,

ﬁZLN(Zl:N) = Z Z qZ1N|XLENY LN (ZLN‘
$1€S81 52€82 1
fin(s1), fa,n(s2)) SIS
The multiple access channel resolvability region R, is
defined as the closure of the set of all achievable rate pairs.

Theorem 1 ( [8, Theorem 1]). We have R,, = R, with

R, 2 U {(R1,Ry) : I(XY; Z|T) < Ry + Ry,

(Y Z|T) < Ra},

PrT.4x|T:9v|T

where pr is defined over T = [1,|Z|+3] and ax|7s
qy|r are such that, for any t € T and z € Z,

qaz(z) = Z Z axr(zlt)ayr(ylt)az xy (2|2, y).

reEX yey

Note that reference [8] provides only the existence of
a coding scheme that achieves any rate pair in R,,. By
contrast, our goal is to provide an explicit low-complexity
coding scheme that achieves R, .

IV. CODING SCHEME
A. Review of source resolvability
Definition 3. A (2V7 N) source resolvability code for
(X, qx) consists of

o a randomization sequence S uniformly distributed over
S AL [[1’ 2NR]],.
o an encoding function fn :S — XN;
and operates as follows. The encoder forms X LN-2 £ (S)
and the distribution of X'V is denoted by px1:~.

Definition 4. R is an achievable resolution rate for a discrete
memoryless source (X,qx) if there exists a sequence of
(2NE N source resolvability codes such that
li D(p 1 ~N)=0
i D(Exuxlgxn) =0,
where qxin 2 vazl qx. The infimum of such achievable
rates is called the source resolvability

Theorem 2 ( [1]). The source resolvability of a discrete
memoryless source (X,qx) is H(qx).

B. High-level description of our coding scheme

Definition 5. For the memoryless multiple access channel
(X X V,qz/xv,Z) we define

RX,Y £ {(Rl,Rg) : I(XY,Z) < R1 4+ Ry,
I(X;7) < Ry,
I(Y;Z) < Ry},

for some product distribution pxpy on X X ).

To show the achievability of R;Z, it is sufficient
to show the achievability of Rxy. First, note that if
Rx,y is achievable, then the convexity of R,, shows
that Conv(lJ,,, Rx,y) is also achievable, where Conv
denotes the convex hull. Then, Conv(U,,,, Rxy) O
R,, by remarking that the corner points of R
are in Conv(,, , Rxy). For instance, the corner
point (I(X;Z|T),I(Y;Z|XT)) € R, belongs to
Conv(U,,,, Rx,v) since

([(X;Z|T), 1(Y; Z|XT))

=Y pr(OI(X; Z|T =), 1(Y; Z|X, T = t)).
teT
Similarly, the other corner points of R;  also belong to
Conv(U,, ,, Rx,v). Next, we consider two cases to achieve
the region R x,y for some fixed distribution pxpy .

o Case 1 (depicted in Figure 1): I(XY;2) > I(X;Z) +
I(Y;Z). In this case, it is sufficient to achieve the
dominant face D.

 Case 2 (depicted in Figure 2): I(XY;Z2) = I(X;Z) +
I1(Y;Z). In this case, only the corner point C' needs
to be achieved. Note that it is impossible to have
I(XY;Z) < I(X;Z) + I(Y; Z) by independence of
X and Y.

C. Encoding Scheme for Case 1

By inspecting Figure 1, we have the following proposition.

Proposition 1. To achieve the region Rxy when
I(XY;2Z) > I(X;Z)+ I(Y; Z), it is sufficient to achieve
any rate pair (Ry, Ry) in D, where
D £ {(Ri,Re): Ry € [I(X;2),1(X; Z|Y)],
Ry = I(XY:Z) — Ry }.
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Fig. 1. Region Rx y in Case 1: I(XY;2Z) > I(X;Z)+ I(Y; Z).
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Fig. 2. Region Rx,y in Case 2: I(XY;Z) = I(X;2)+ I(Y; Z).

We will need the following results to show the achievabil-
ity of D with rate-splitting.
Lemma 1. As in [16, Example 3], we choose f: Y x Y —
Y, (u,v) — max(u,v), and split (¥,py) to form (Y X
Y,pu.pv.), € € [0,1], such that for any € > 0, prw. v,y =

py, for fixed (y,u), psw. vy u. (ylu) is a continuous function
of €, and

Uep =0 = V_y, ()
Ue=1 = f(Ue=1, Ve=1), 3)
Ve=o = f(Ue=0, Ve=0). €]

When the context is clear we do not explicitly write the
dependence of U and V with respect to € by dropping the
subscript €. Then, we have I1(XY;Z) = Ry + Ry + Ry,
where we have defined the functions

Ry : e I(X; Z|U), from [0,1] to RT,
Ry e~ I(U; Z), from [0,1] to RT,

Block i

F; Block i+1

Fig. 3. Functional dependence graph of the block encoding scheme for
multiple access channel resolvability. N;, 7 € [[1, k], is the channel noise
corresponding to the transmission over Block . For Block i, (E;, Fi_1),
(~Di, Di_1), (F;, F;—1) are the randomness used at the encoder to form

X;, U;, V;, where Vi € [[2, k]], El = Ei—l, Dz = D’i—lv F‘l = Fi—l and
E;, D;, F; are only used in Block 3.

Ry :e— I(V; Z|UX), from [0,1] to RT.

Moreover, € — Ry(€) is continuous and
[I(X;2),1(X; Z|Y)] is contained in its image.

Proof. The proof is similar to [16], [18]. We have

1(xY;2) ¥ 1(xuv; 2)

Y 1 2) + 1(x; 2|U) + 1(V; Z|UX),
where (a) holds because I(XUV;Z) > I(XY;Z) since
Y = f(U,V), and I(XUV;Z) < I(XY;Z) since
(X,0,V) — (X,Y) — Z forms a Markov chain, (b) holds
by the chain rule.

We know by [16, Lemma 6] that I (X; ZU) is a continuous
function of ¢, hence so is

Ry = I(X: Z|U) = I(X; 2U),

where the last equality holds by the independence between
X and U. Then, I(X;Z) and I(X; Z|Y') are in the image of
Ry by (2) — (4), and hence, using I(X;2) < I(X;YZ) =
I(X;Z|Y), [I(X;Z),I(X; Z|Y)] is also in the image of R,
by continuity. O

Fix quy and consider the corresponding distribution
quvxyz. Let N = 2" n € N, and assume that |X|
and |)| are prime numbers. Define X'V £ CUNG,
UtN & AuNg YN & BUNG - where G, is defined
in Section II, and define for 3 < 1/2, 6y = 27V ? and the
sets

Vo 2 {i € [1,N]: H(A'|A¥Y) > log|Y|—dn},
Vv £ {i€[1,N]: HBB"') > log|y|-dn},
Vx £ {i € [1,N]: H(C'|C""') > log|X|-6n},

Vuiz £ {i € [1,N] : H(A'|AW 1 ZEN)
> log|Y|—dn},



Vxwz 2 {i € [1,N]: H(CHCY 1yt Zz1Ny
VV|UZX = {Z S [[I,Nﬂ ;H(Bi|Blii*1U1:NZLNX1;N)
> log|V|—dn} -

The encoding scheme operates over £k € N blocks of

Algorithm 1 Encoding algorithm at Transmitter 1

Require: A vector E; of [Vx|uz| uniformly distributed
symbols, and k vectors Ey. of |[Vx\Vx|yz| uniformly
distributed symbols.

1: for Block i =1 to k do

2: El — El

3 CHNVxwzl «+ B

4 CHNVx\Vxzl < E;

5 Successively draw the remaining components of

CINV4] according to
Pojiors (€01
£ goijcra-1 (]G ®)

6:  Construct X}N 2 CING, and send the codeword
over the channel.

7: end for

if j € V%

length N and is described in Algorithms 1 and 2. A high
level description of the encoding scheme is as follows. For
the first transmitter, we perform source resolvability for the
discrete memoryless source (X, ¢x) using randomness with
rate H(X) in Block 1. We perform rate splitting for the
second transmitter to get two virtual users, and then source
resolvability for the discrete memoryless sources (Y, qu)
and (), qv) using randomness with rates H(U) and H(V),
respectively in Block 1. As it will be shown later the amount
of randomness used in Block 1 is non-optimal. For the next
encoding blocks, we proceed as in Block 1 using source
resolvability and rate splitting except that part of the random-
ness is now recycled from the previous block. More precisely,
we recycle the bits of randomness used at the inputs of the
channel in the previous block that are almost independent
from the channel output. The rates of those bits will be shown
to approach H(X|UZ), H(U|Z), H(VIUZX) for User 1
and the two virtual users, respectively.

Remark 1. An interpretation of the set Vx |y z is that the se-
quence C}’N[VXWZ] (used to form )Z'}’N) is asymptotically
independent of (UYN, ZVN) [19]-[21]. We thus choose to
recycle C}N[Vy 7] in the next block to form X%, We
have a similar interpretation for the sets Vi z and Vy |y zx.

Remark 2. The randomizations described in (5) — (7)
could be replaced by deterministic decisions for the indices
S Hi HY, where

Hx £ {i € [1,N]: H(C'|C""!) > én},
Hy 2 {i € [1,N]: HA' A" ") > 6n},

Algorithm 2 Encoding algorithm at Transmitter 2

Require: A vector D; of |Vu|z| uniformly distributed sym-
bols, and k vectors Dy.;x of [Vi\Vy|z| uniformly dis-
tributed symbols. A vector Fy of [Vyyzx| uniformly
distributed symbols, and k vectors F.; of [Vy\Vy v zx|
uniformly distributed symbols.

for Block i =1 to k do

i D1

i F 1

N[VU|Z] «— D,

1:N

N

’“ljl b|

Vo\Vu|z] < D;
Wvivzx] < Fi

NV \Vvuzx] < Fi
Successively draw the remaining components of

AEN[VE] according to
~ -1
pAg\A§=f*1(a3|Ai )
2 quijavi-1(al] 4797 (6)

9:  Successively draw the remaining components of
B}N[Vg] according to

~ i lij—1
Ppipra—r (Ui B )
£ qpspra— (0] |1B77Y)

10:  Construct UINAAlNG and VINABlNG

11:  Form Y} N s f(U1 Ny N) (as described in
Lemma 1) and send the Codeword over the channel.

12: end for

»—A~>->—I

1:
2:
3
4
5:
6
7
8
it jeVg

ifjeve ()

Hy £ {ie[1,N]: HB'|B"" ') > én},
i.e., randomized decisions are only needed for the indices in
VS\HS, VE\HS, VG \HS,, respectively, as shown in [22].

Theorem 3. The coding scheme of Section IV-C, which
operates over k blocks of length N, achieves the region Rx y
for the discrete memoryless channel (X x Y,qxy|z,Z),
where |X| and |Y| are prime numbers. The coding scheme
is explicit with complexity O(kN log N).

D. Encoding Scheme for Case 2

Fix a joint probability distribution gxyz over X x Y
Z, where |X| and |Y| are prime numbers. Define XV
CHNG,, YEN £ BENG “and the sets

Vx £{i € [1,N]: H(C'|C""') > log|X|-0n},
Vy 2 {i€[1,N]: H(B'|B*') > log|Y|-én} ,
Vxiz £ {i € [1,N]: H(C'|C""~1Z"N)

|I> %

> log| X[—dn},
Vy|zx £ {2 € [1,N] : H(B!|BY =t z\:N x 1)
> log|Y|—dn}.
The encoding scheme operates over k € N blocks of length

N £ 2" n € N. The encoding for the first transmitter

is the same as Algorithm 1 with the substitution U < ),



§Ei+1

Block i+1

Fig. 4. Functional dependence graph of the block encoding scheme for
multiple access channel resolvability. N;, + € [1, k], is the channel noise
corresponding to the transmission over Block <. For Block iL(Ei JEi_1),
(Fi, F;_1) are the randomness used at the encoder to form X, Y;, where
Vi € [2,k], E; = E;_1, F; = F;_1 and E;, F; are only used in Block 3.

and for the second transmitter, the encoding is described
in Algorithm 3. A high level description of the encoding
scheme is as follows. For the first and second transmitters,
we perform source resolvability for the discrete memoryless
sources (X, qx) and (), qy) using randomness with rates
H(X) and H(Y), respectively. As it will be shown later
the amount of randomness used is non-optimal. For the next
encoding blocks, we proceed as in the Block 1 except that
part of the randomness is now recycled from the previous
block. Specifically, we recycle the bits of randomness used
at the inputs of the channel in the previous block that are
almost independent from the channel output. The rates of
those bits can be shown to approach H(X|Z) and H(Y|ZX)
for User 1 and User 2, respectively.

Algorithm 3 Encoding algorithm at Transmitter 2

Require: A vector F) of |Vy|zx| uniformly distributed
symbols, and k vectors F1. of |[Vy\Vy|zx| uniformly

distributed symbols.
1: for Block i =1 to k do
2: fg(—-ﬁ& B
3 BNy zx] « F
4 BiVWy\Vyzx] < F
5:  Successively draw the remaining components of
BEN[Vg] according to

Ppspra— (0B )
2 gpijpra—1 (b]|B7 ) ifjevy (8)

6:  Construct YN £ BEN@G, and send the codeword
over the channel.

7: end for

Remark 3. The randomizations described in (8) could be
replaced by deterministic decisions for j € HS., where
Hy £ {i € [1,N]: H(B|B¥~') > 6y}, ie., randomized
decisions are only needed for j € VZ\HS, as shown in [22].

Theorem 4. The coding scheme of Section IV-D, which
operates over k blocks of length N, achieves the region Rx y

over the discrete memoryless channel (X x Y,qz\xy,Z2),
where |X| and |Y| are prime numbers. The coding scheme
is explicit with complexity O(kN log N).

V. CODING SCHEME ANALYSIS

We focus on Case 1 and omit Case 2 due to space
constraint. We start by proving with the first two lemmas
that the target distribution is well approximated in each Block
i€[1,k].

Lemma 2. For Block i € [[1,k],

D(qua:vyn xun [Py iy xiv) < 3N,
where 51(\}) £ 3N§y.
Proof. We have

]D)(quzNVI:NXI:N |‘ﬁU‘1:NV‘1:Nx_1:N)

(a) ~
= E[]D)(lezN‘Ul:Nvl:N prgzN‘Ug:NVil:N)]

+ ]D)(QUI:NVI:N ||§Ui1:NVi1:N)

() ~ ~
= E[D(gx1n[[px1:v)] + D(quavyin [pyrnyav)

(@ ~ ~
= D(qxl:N HpXiLN) + E[D(qulevl:N ||pU7}:N“/i1:N)]
+ D(qvl:NHﬁVilzN)
= D(gxrn[[Pxpn) +Dlgurn [Pyp~) + D(gyrn|[pyaen)
(4) ~ ~ ~
= D(gcrn [Perv) + D(qarw [par~) + D(gpun||Pprv)

N
(e ~
=Y Eopryo Dlgcijovi- [Posori-t)

=1

N
+ 3 Eguo D(qasavioi [P apari-)
j=1

_|_

M=

Eqp1-1D(aBijpri-1|Ppy gri-1)
1

,\
=
M o

Il

Eqgry Dlgesicri s crimt)

JEVX

+ Z ]Equzjle(QAﬂAl:j_l||§A{‘Ai=j—1)
Jj€Vu

+ D Eqpiyoi D(apipra-i [P prat)
JEVV

23" (loglx| - H(CICY)

JEVX

+ ) (logly| — H(A|A™7Y))
Jj€Vu

+ Y (log|y| — H(B|B'™1))
JEVV

(h)
< Vx[on + Vuldn + [Vv[on
< 3N6N7

where (a) holds by the chain rule for divergence [23], and
the expectation is over qyi:~vy1:~, (b) holds because X1V



is independent from (U, VV) and X 1N is independent
from (UFY,VEN), in (c) the expectation is over gy~
(d) holds by invertibility of G,,, (e) holds by the chain rule
for divergence, (f) holds by (5) — (7) , (g) holds by the
uniformity of the symbols in positions Vx, Vy and Vy, (h)
holds by the definition of Vx, Vi and Vy . O]

Lemma 3. For Block i € [1,k], we have

~ 1
D(gpiny N x1uny 1N ZiN HpUiLNViLNXiLNYil;NZiLN) < 51(\,).

Proof. First, we have
- (@) ~
pY.lzN‘Ul:NV_I:leiN = pY,LN‘U,l:NV,l:N

®)
= qyl:N‘Ulszl:N

(ZC) qYl:N|U1:NV1:NX1:N (9)
where (a) holds because X}V is independent from
(UFN, VEN Y EN) (b) holds by the construction of Y1V
and V¥V, (c) holds because XV is independent from
(UI:N Vl:N Yl:N).

Next, we have

D(qu:Nvl:le:Nyl:NzlzN m?U;:NV;:NX;:Ny_l:NZ;:N)
(;) E[D(quzN|U1:Nvl:NX1:Nyl:N ||2’5Z’_1:N‘Ullsz_lzNX’_l:Ny'/_l:N)]
+ D(quzNVI:NXI:NYI:N ||5U_1:Nv_1:NXv1:NYV1:N)
K K 7 7
® ~
= ]E[D(qzl:N‘XI:NYI:N HpZiI:N‘Xil:N}/il:N)]
+ D(grinvyen xunyun ||Pyrvyin xiny N )

(é) D(qu:Nvl:NXlzNyl:N H]aiU_l:NV‘l:Nx_lzNy_lzN)

(i) ]E[D(qleN‘Ulszl:le:N ||i?’y_1:N|U’_1:NV_1:Nx_1:N)}
+ D(qUI:NVI:NXI:N ||ﬁU3:N%1:NX1}:N)

O] ~
= ]D)(QUI:NVI:NXI:N ||pUi1;NVi1;NX7}:N)

@ (1
< oy,
where (a) holds by chain rule for divergence [23] and the
expectation is over ggi:ny1n xuny 1, (D) holds by the two
Markov chains (UYN, VEN) — (XUN y 1Ny — 71N and
(UFN VENY — (XEN YNy ZEN D (¢) holds because

gzuN|XLNY LN = ’ﬁZvlzN‘le:Nle:N, in (d) the expectation
is over guinyinxin, (e) holds by (9), (f) holds by
Lemma 2. O

We now show that the channel outputs of two consecutive
blocks are asymptotically independent.

Lemma 4. For i € [2,k], we have

= I 1T~ (2)
D (pZilf\{:iDlElFl||pZi1;J\1’D1E1F1pZi1:N> <ON

where 5](3) = 5](\}) +2N+v2In 2\/5](\})
xlog <|X||y|3|2|/ {\/21112\/55;)]) .

Proof. Let i € [1,k]. We have
H(A"N[Vy 7)1 Z2'N) = HAFN V2| ZEY)
_ H(ALN[VU‘Z]ZI:N) o H(AV’}N[VU‘Z]ZZIN)

+H(ZMY) - H(Z)

INE

NLylog(|Y|[Z]/L1) + N Lz log(|2]/L2)

b
< 2N Lz log(|X||V[*|Z|/Ls)

—~
=

—~

< onvamay o tog (1210121 Va2 )

2 5](\;1302)

N

; (10)

where (a) holds for N large enough by [11, Lemma 18]
with L, = '\/21H2\/D(qA1:N[vU‘Z]Z1:N||§A}:N[VU‘Z]Z}:N),

Ly & V2In2,/D(gzun|[pgin), (b) holds for N large
enough because max(Lq,Lo) < L3 by the chain rule for
relative Kullback-Leibler divergence and invertibility of G,
with Ly £ v/21n2

D(quszl:le:Nyl:Nzl:N ||5U’_1:Nv_1:Nle:Ny_1:NZ_l:N ),
(¢) holds for N large enough by Lemma 3.

One can obtain the same wupper bound for
H(BYN Wy x]|[UMN ZEN XEN) — H(BEN Wy 24|
ﬁ}:NZiLNXr}:N) and H(cl:N[VX‘UZ”Ul:NzlzN)_
H(CEN Vx| 2)|UFN ZEN). Then, for i € [2,K],

D (523311.51@1 FPzin D, B, Flﬁz;w)

= I(Z},qDlE_’lFl, Z}N)
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where (d) holds by the Markov chain Zi_1—(Dy, By, Fy)—
2N, (e) holds by Algorithms 1 and 2, (f) holds by the uni-
formity of A Nzl C NVxjuz] and B NVvivzxls
(g9) holds by ( 0), (h) holds because condltlonmg reduces
entropy, (i) holds by the definition of Vy|z,Vxvz, and

Wivzx- O

We next show that the outputs of all the blocks are
asymptotically independent.

Lemma 5. We have
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where (a) holds by [11, Lemma 16], (b) holds as for any
i € [3, k], the Markov chain ZL:N, — Dy By Fy Z2Y — Z1N
holds, (¢) holds by Lemma 4. O

We now show that the target output distribution is well
approximated jointly over all blocks.

Lemma 6. We have

D (ﬁzllfff HqurkN) < 55\3”),

where
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Proof. First, we observe that
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< koy,
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where the inequality holds by Lemma 3. Then, we have, for
N large enough,
D (52%555

D (5211::£Y|‘QZ11’9N)
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< log —N 2In2
MQZ
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where (a) holds by [l1l, Lemma 17 ] and because
= pf, (b) holds by Lemma 5 and (11). O

k
Hﬁz}rN)
i=1

Kq,1n

Our encoding scheme exploits randomness to draw sym-
bols according to (5)-(7), whose rate is for any i € [1, k],

1 SR I
i _ J|ALtig—1 Jiolii—1
Nl_lﬂloo > HAAY+ Y H(B!BT
JeVy JEVS
+ > H(CHCT
JEVS

We quantify this rate in the following lemma, whose proof
is similar to [11, Lemma 20 ] and is thus omitted.

Lemma 7. We have for any i € [1,k]

1 e —
3 il J|ALi—1 j1oli—1
NLHEOO E H(A][A;7777) + E H(B]|B; )
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+ > H(E Y | =0
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Finally, we determine the rate pair achieved by our coding
scheme.

Lemma 8. The rate pair (R1, Ry + Ry) is achievable and
H(X|UZ)

G Ry =1(X:Z|U) + ===



H(U|Z)
k b
H(V; Z|UX)

Glim Ry =I(ViZ[UX) + =

i Ry =102 +

Proof. By Lemma 7, the overall rate of uniform symbols
required are the following:
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o kN N
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A2F0, [(V; ZIUX) + .

Eoteo, (v ZIUX),

where we have used [21, Lemma 7] in the limits. Finally, we
conclude that the rates Ry = I(X;Z|U), Ry = I(U;Z2),
Ry = I(V; Z|UX) are achieved with Lemma 6. O

VI. CONCLUDING REMARKS

We proposed an explicit and low-complexity coding
scheme that achieves the multiple access channel resolvabil-
ity region of an arbitrary discrete memoryless multiple access
channel whose input alphabets have prime cardinalities. Our
results improve earlier constructions that were limited to
symmetric multiple access channels. The main idea of the
coding scheme is to reduce the problem of multiple access
channel resolvability in a combination of source resolvability
problems. Our construction involves block-Markov coding
that takes advantage of randomness recycling in different
encoding blocks, and uses polar codes for source coding
to implement source resolvability. Rate splitting is also
employed to avoid, as much as possible, time-sharing.

We remark that the way source resolvability and random-
ness recycling is implemented in our coding scheme, heavily

relies on the intrinsic structure of polar codes. Consequently,
it remains open to determine whether polar codes can be
substituted by other source resolvability codes in our coding
scheme. Providing a positive answer to this question would
make our construction more general.
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